FAR BEYOND

MAT122 Product Rule

Power Rule

$$(ax^n)' = \frac{d}{dx}ax^n = nax^{n-1}$$

Review Exponential Derivative: (base e)

$$(e^x)' = e^x$$

Special Cases:

Do: differentiate
$$f(x) = 5x^{100} - e^x + 7\sqrt[3]{x} + 11$$

 $\frac{d}{dx}a = 0$ where *a* is a constant

Exponent Law:

$$\sqrt[n]{x} = x^{1/n}$$

Product Rule - Intro

When two *differentiable* functions are <u>multiplied</u>, use the **Product Rule** to take derivative:

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)

$$\frac{d}{dx}[f(x)g(x)] = \frac{d}{dx}f(x) \cdot g(x) + f(x) \cdot \frac{d}{dx}g(x)$$

ex. find the derivative of $h(x) = xe^x$

$$=e^{x}+xe^{x}$$

Product Rule – cont'd

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

ex. find the derivative of $h(x) = (x^2 + 3x) (5x^3 - 2)$

f

$$h'(x) = (2x+3)(5x^{3}-2) + (x^{2}+3x)(15x^{2})$$

ex. differentiate $f(y) = \left(\frac{1}{y^{2}} - 3y^{4}\right)(y+5y^{3})$
 $f'(y) = \left[\left(-\frac{2}{y^{3}} - 12y^{3}\right)(y+5y^{3}) + \left(\frac{1}{y^{2}} - 3y^{4}\right)(1+15y^{2})\right]$

Product Rule – Do

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

Do: differentiate
$$f(x) = (4x^3 - 6x^2 + 1)(5x^4 + 7x^2 + 3x)$$

Do: find
$$f'(x)$$
: $f(x) = (x + \sqrt{x} + \sqrt[3]{x})(e^x - x^2)$

Rate of Change - Application

ex. The cost (in dollars) of producing x phone chargers is given by C(x) = (3x-25)(500-x). Find the rate at which cost is changing when 100 chargers have been produced.

Step 1: find general derivative

Step 2: plug 100 into <u>derivative</u>